DEpPT. OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS
ECS60 INSTRUCTOR: ROB GYSEL 1/18/18

Programming Assignment #1*
Due date: 1/27/18 11:59pm

Programs are to be submitted to Kodethon by the due date. Refer to the syllabus for
group work policies. The Kodethon autograder is still being developed, but it is possible
to complete the assignment without it. You may use Rust, Java, or C++ for your code.
However, I strongly recommend you use C+- for this program because I have provided
skeleton C++ code for the project, and you do not need to do any object-oriented
programming for this project.

Students that work alone for all programs a receive a B- or better on the programs will
receive 1% extra credit at the end of the quarter. Programs submitted up to 24 hours
late will still be accepted but incur a 10% grade penalty.

1 Overview & Learning Objectives

In this program you will study and experiment with InsertionSort, MergeSort, and Quick-
Sort. There are multiple objectives of this assignment:

1. introduce the JSON (JavaScript Object Notation) and CSV (comma separated
values) data formats, which are frequently used in professional settings,

2. examine the wallclock running time of InsertionSort, MergeSort, and QuickSort,

3. understand fine-grained details of algorithm analysis (wallclock vs. worst-case Big-
O vs. average-case Big-O),

4. introduce automated testing, and

5. provide practice with open-ended project descriptions (this is an important job
skill).

*Last updated January 18, 2018

2 Data Formats

JSON

We will call each array that is to be sorted a sample. You will be running your pro-
grams on one or two input files that contain a number of samples. These files will be
formatted in JavaScript Object Notation (or JSON). This data format, and many like it,
is frequently used in industry, and every computer science student should be exposed to
it. These types of formats are frequently used for web requests and to pass data from
one programming environment (ex. Objective-C) to another (ex. Swift).

JSON files for this program will be formatted like this (this is SampleExample.json in
the files provided):

{
"Samplel": [-319106570,811700988,1350081101,1602979228],
"Sample2": [-319106570,811700988,797039,-1680733532],
"metadata": {
"arraySize":4,
"numSamples" :2
+
¥

Samplel and Sample2 are arrays of integers. metadata is data about the data Samplel
and Sample2: there are two samples and each is an array of size 4.

A JSON object consists of a collection of key / value pairs. It turns out you are already
familiar with the concept of key / value pairs: an array can be viewed as a collection
of key / value pairs where the keys are in the range 0,1,...,n — 1 for an array with n
elements. For example, the array A = [-3,9,4] has A[1l] = 9, and here the "key" is 1
and the "value" is 9.

In the example above, the object has three keys: Samplel, Sample2, and metadata. The
values of Samplel and Sample2 are arrays with 4 integers. The value of metadata is a
JSON object itself, and it has two keys: arraySize with value 4 and numSamples with
value 2.

Reading (or parsing) a JSON object from a JSON file is a difficult task: do not write
your own code for this. You must use a 3rd-party library for this task, and I have
used |https://github.com /nlohmann /json| in the skeleton code, which is included in the
project files as include/json.hpp. The github repo contains documentation, but for
brevity, here are the operations with this library you will need to be familiar with:

Reading a JSON file: Use ifstream and the stream operator, like this:

std::ifstream file;
file.open(filename) ;
nlohmann:: json jsonObject;
// Store the contents filename into jsonObject
if (file.is_open()) {
file >> jsonObject;

}

Value access: To access a value associated with a key, use square braces along with the
key. For example, if we read the file SampleExample.json to jsonObject, then
jsonObject ["Samplel"] returns the array

[-319106570,811700988,1350081101,1602979228]]

If we write int n = jsonObject["metadata"] ["arraySize"], then n is 4.

Iterating over keys: You can iterate over all key / value pairs at the top level by doing;:

for (auto itr = jsonObect.begin(); itr != jsonObject.end(); ++itr) {
std::cout << "key: " << itr.key() << " value: " << itr.value() << ’\n’;

¥

This would print:

key: Samplel value: [-319106570,811700988,1350081101,1602979228]
key: Sample2 value: [-319106570,811700988,797039,-1680733532]
key: metadata value: {"arraySize":4,"numSamples":2}

Note that the value of the metadata key is a JSON object itself, and this object has
keys arraySize and numSamples that are not iterated over in the above for loop.
The type of itr.key() is a string and the type of itr.value() varies. When the
key is Samplel, the value is a JSON object representing an array of integers that
you can iterate over like this:

for (auto arrayItr = jsonObect["Samplel"].begin();
arrayltr != jsonObject.["Samplel"].end();
++arrayItr) {
std::cout << arrayltr << " ";

}

This would print:

-319106570 811700988 1350081101 1602979228

Csv

Measurements of the sorting algorithms will be recorded in CSV files. This data format,
and many like it, are frequently used in industry, and every computer science student
should be exposed to it. There are many types of "CSV" ﬁlesﬂ and we describe one of
the simplest versions here.

A comma separated values file, or CSV file, consists of a header row on the first line of the
file, followed by data records on subsequent lines. The header row consists of a collection
of column names separated by commas. The data records consists of data (this may be
strings, numbers, etc.) separated by commas. For example, the contents of a CSV file
for student information:

Name,ID,email,year
AlexGrothendieck,423518,alexgOmyuni.edu,3
EmmyNoether, 4245534, emmynoether@myuni.edu, 2
JuliaRobinson, 23634563, jrob@myuni.edu,2
MartinDavis, 2359830, mdavis@myuni.edu,1

In the above example, the header row consists of four column names, Name, ID, email,
and year. FEach data record therefore has four data, and the order is significant: on line
2 (the first data record), the Name is AlexGrothendieck, the ID is 423518, the email is
alexg@myuni.edu, and the year is 3.

3 Executables

Because multiple languages are allowed, your program must contain shell scripts to run
your executables. I recommend writing bash scripts, and have provided examples of
thesd—f]. The following is a list of executables and scripts you must turn in. I am listing
them in the order I suggest you work on them.

Executable #1

Script: sortedverification.sh
Usage: sortedverification.sh inputFile.json

This script will call a C++, Java, or Rust program that takes a command-line argument
inputFile. json, and verify that each sample is a sorted array. If a sample array is not
sorted, there must be some position i such that the i*® element is equal to or larger than
the i+ 15" element. We call this a consecutive inversion. For example, if A = [-2,0, 3,2, 5]
there is a consecutive inversion at location ¢ = 2 because A[2] = 3 > 2 = A[3]. For
example, the samples

!For example, there are CSV formats that allow tab delimiters instead of commas.
2My bash scripts are 2 lines long.

Samplel = [—1641818748,1952682320, —195384256, —1702150187], and
Sample2 = [—683761375, —406924096, —362070867, —592214369]

are defined by the following input file SampleExample. json:

{
"Samplel": [-319106570,811700988,1350081101,1602979228],
"Sample2": [-319106570,811700988,797039,-1680733532],
"metadata": {
"arraySize":4,
"numSamples":2
+
¥

Sample2 has consecutive inversions at index 1 and 2, and running
./sortedverification.sh SampleExample.json
outputs a JSON file whose contents are printed to stdout:

{"Sample2":{"Consecutivelnversions":{"1":[811700988,797039],"2":
[797039,-1680733532] }, "sample": [-319106570,811700988,797039,-1680733532] },
"metadata":{"arraySize":4,"file":"SampleExample.json", "numSamples":2,
"samplesWithInversions":1}}

The above text is printed on a single line to stdout (use output redirection to save to a
file). To make it readable, use https://jsonformatter.curiousconcept.com/ to obtain
a human readable version of this string (i.e. whitespace is added for clarity):

{
"Sample2":{
"ConsecutiveInversions":{

LR
811700988,
797039

1,

s [
797039,
-1680733532

s
"sample": [
-319106570,

https://jsonformatter.curiousconcept.com/

811700988,
797039,
-1680733532

3,

"metadata":{
"arraySize":4,
"file":"SampleExample. json",
"numSamples":2,
"samplesWithInversions":1

}

You can also view this output in the file SV-SampleExample. json.

Samplel has no inversions so its data is not printed to the JSON output above. Notice
that if the consecutive inversions of a sample are added to the JSON object, the sample
data (the array) is also added to the JSON object.

Executable #2

Script: consistentresultverification.sh
Usage: sortedverification.sh inputFile.json.

This script will call a C++, Java, or Rust program that takes two command-line argu-
ments inputFilel. json and inputFile2. json, and verify that these files represent the
same samples.

I have copied SampleExample.json to AlmostSampleExample.json and modified the
second and third entries of Samplel in AlmostSampleExample.json. These differences
are output when I run

./consistentresultverification.sh SampleExample.json AlmostSampleExample.json

The program outputs the following to stdout (to save to a file, use output redirection):
and the output, after making it human readable using the above link and doing some
hand-modification to place arrays on the same line is:

{
"Samplel": {
"Mismatches": {
"i": [811700988, 8117009 1,
"2":[1350081101, 13500811]
},
"samplel": [-319106570, 811700988, 1350081101, 1602979228 1],
"sample2": [-319106570, 8117009, 13500811, 1602979228]

s
"metadata": {
"samplesWithConflictingResults": 1
I
"samplel": {
"metadata": {
"arraySize": 4,
"file": "SampleExample.json",
"numSamples": 2
}
.
"sample2": {
"metadata": {
"arraySize": 4,
"file": "AlmostSampleExample.json",
"numSamples": 2
¥
b
+

You can also view this output in the file CRV-Output-SampleExample-AlmostSampleExample. json.

Executable #3

Script: timealgorithms.sh
Usage: timealgorithms.sh inputFile.json

This script will call a C++-, Java, or Rust program that takes a command-line argument
inputFile. json, runs InsertionSort, MergeSort, and QuickSort on all samples in the
file, measures various statistics, and prints the to a CSV file.

Do not implement your own versions of the algorithm. Use the zyBooks code from
Ch. 1.7-1.9 for your code. Slight variations of these algorithms will not work with the au-
tograder, as you will be gathering specific statistics about how the algorithms behave. I've
implemented the sorting algorithms in C++ for you, so I recommend that you start with
my implementations (e.g. insertionsort.cpp, mergesort.cpp, and quicksort.cpp)
Collect the following statistics:

Running Time: i.e. wallclock time. I used time from the <ctime> library for this.

Number of Comparisons: A count of how often an algorithm compares at least one
element from the array it is sorting to something else. The following lines of code
both count as a single comparison:

(*numbers) [i] < (*numbers) [j]
(*numbers) [i] < a

You will need to add lines of code to the sorting algorithms to achieve this.

Number of memory accesses: A count of how often an algorithm accesses the array it
is sorting. In the above example, the first line counts as two memory accesses while
the second line counts as one.

These statistics are then printed to the screen in CSV format (to save to a file, use output
redirection). Your header row for your CSV file must have the following column names
(see TimeOutputExample.csv for an example):

Sample: The name of the sample that pertains to this row’s statistics (e.g. Samplel)
InsertionSortTime: The wallclock time of running InsertionSort on this row’s sample

InsertionSortCompares: The number of compares used when running InsertionSort
on this row’s sample

InsertionSortMemaccess: The number of memory accesses when running InsertionSort
on this row’s sample

MergeSortTime: The wallclock time of running MergeSort on this row’s sample

MergeSortCompares: The number of compares used when running MergeSort on this
row’s sample

MergeSortMemaccess: The number of memory accesses when running MergeSort on
this row’s sample

QuickSortTime: The wallclock time of running QuickSort on this row’s sample

QuickSortCompares: The number of compares used when running QuickSort on this
row’s sample

QuickSortMemaccess: The number of memory accesses when running QuickSort on
this row’s sample

4 Compilation

Submit a script called compile.sh that will compile all of your source code once it is
run. For example, in the skeleton code I have provided, I have used compile.sh which
uses a Makefile to build my code.

5 Take the Program Quiz

A quiz will be released on Canvas (forthcoming) that you are to take after completing
the project. You must take your own quiz, even if you have a programming partner. You
will have unlimited attempts but will not see your score until after the due date (to allow
for changing your answers without allowing gamification of the quiz). This quiz will be
worth 15% of your programming grade.

	Overview & Learning Objectives
	Data Formats
	Executables
	Compilation
	Take the Program Quiz

