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1 First Problem

Solution. To prove that f(n) = O(n2), if f(n) = 3n2 + 2n + 4, I have to prove that

there are constants c and M such that ∀n ≥ M , f(n) ≤ c· g(n), where g(n) = n2. In

other words, there is a constant, c that when multiplied g(n), will allow g(n) to always

overtake f(n) ∀n ≥M . In this case, f(n) = 3n2 + 2n+ 4 ≤ c·n2.

To make the proof easier, I chose M = 1 such that n ≥ 1. I can then use this de�nition

to �nd a term greater than each term in f(n) so that f(n) = 3n2 + 2n+ 4 ≤ c·n2. The

resulting terms have to deal with the constants in f(n).
Because n was de�ned such that n ≥ 1, we can then multiply both sides by n to show

that n2 ≥ n resulting in

n2 ≥ n ≥ 1

by multiplying each term in the inequality by the constant we want to remove, we can

show that:

2n2 ≥ 2n ≥ 2

and

4n2 ≥ 4n ≥ 4

which takes care of the 2n and 4 constants respectivelly. To �nd a value greater than

f(n)'s �rst term, we use the de�nition of the ≥ operator: 3n2 ≥ 3n2 by de�nition.

This leads to the following inequality:

3n2 + 2n+ 4 ≤ 3n2 + 2n2 + 4n2

Each term on the right is greater than or equal to its corresponding term on the left

which makes the sum of all the right terms greater than f(n).

3n2 + 2n+ 4 ≤ 9n2
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This means that if g(n) is multiplied by the constant c = 9, after n ≤M , where M = 1,
f(n) ≤ c· g(n) proving that f(n) = O(n2).

2 Second Problem

Solution. If f(n) = log(n) and f(n) = O(g(n)) it can be proven that g(n) = n if

limn→∞
log(n)

n = c for some constant c ≥ 0. Using L'Hopital's rule

limn→∞
f(n)

g(n)
=

f ′(n)

g′(n)

such that

limn→∞
log(n)

n
= limn→∞

f ′(n)

g′(n)
= c

= limn→∞
1

n
· 1
1
= c

= limn→∞
1

n
= c

= 0 = c

Which satis�es the condition that c ≥ 0 proving that log(n) = O(n). This proof was

done with the assumption that log(n) was ln(n). However, it is also true for other bases

because the addition of a base just adds a constant which is ignored in Big-O notation.

This can also be used to prove that nklog(n) = O(nk+1) for any constant k.

limn→∞
nklog(n)

nk+1
= limn→∞

f ′(n)

g′(n)
= c

= limn→∞
nk−1(k· log(n) + 1

(k + 1)nk
= c

= limn→∞
k· log(n) + 1

n(k + 1)
= c

=
1

k + 1
limn→∞

k· log(n) + 1

n
= c

= limn→∞
f ′(n)

g′(n)

=
1

k + 1
limn→∞

k

n
· 1
1
= c

=
k

k + 1
limn→∞

1

n
= c

=
k

k + 1
· 0 = 0 = c

This also satis�es the condition that c ≥ 0 proving that nklog(n) = O(nk+1). For this

second proof it was necessary to use L'Hopital's Rule a second time to make the proof

possible.
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3 Third Problem

Solution. The logarithmic identity to change the base of a logarithm is

logax =
logbx

logba

Using this identity we can prove that if we have two constants a and b, and f(n) = logan,
then logan = O(logbn) and that logbn = O(logan). By using the identity we can show

that

logan = O
(
logbn

logba

)
and since logba is a constant it gets discarded from the Big-O notation. This results in

logan = O(logbn)

The same excercise can be done for f(n) = logbn where

logbn = O
(
logan

logab

)
where again we discard the constant logab resulting in

logbn = O(logan)

4 Fourth Problem

Solution. If we imply that fi = O(fi+1) for all 1 ≤ i ≤ 5

f(n) O(g(n))
n3 + 2n+ 1 O(n3)
nlog(n2) O(n· log(n2))
n2log(n) O(n2log(n))
2n O(2n)
3n O(3n)
1023n2 + 2n+ 45 O(n2)

The O(g(n)) of each given formula was plotted in R to determine which ones grew faster

asymptotically. This would make it easy to rank them such that fi = O(fi+1) for all

1 ≤ i ≤ 6. Figure 4.1 shows how all 6 equations act as n grows larger.

With the plots the equations can be ranked according to the speed of their growth as:

n· log(n2), n2, n2· log(n), n3, 2n, 3n

Making f1 = n· log(n2), f2 = 1023n2+2n+45, f3 = n2· log(n), f4 = n3+2n+1, f5 = 2n,
and f6 = 3n.
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(a) g(n) plots when n = 80 (b) g(n) plots when n = 1000

Figure 4.1: Plots of O(g(n)) for the various f(n) equations as n grows larger

5 Fifth Problem

Solution. To get the Big-O of a sum, one has to �rst �nd the resulting formula of the

sum. The sum's for this problem is:
∑n

i=0 i which expanded gives:

S =

n∑
i=0

i = 1 + 2 + . . .+ (n− 1) + n

To solve for the formula,

2·S = 2·
n∑

i=0

i = (1 + 2 + . . .+ (n− 1) + n) + (1 + 2 + . . .+ (n− 1) + n)

= (1 + 2 + . . .+ (n− 1) + n) + (n+ (n− 1) + . . .+ 2 + 1)

= [1 + n] + [2 + (n− 1)] + ...+ [(n− 1) + 2] + [n+ 1]

= n· (n+ 1)

When solving for S, the result is S =
∑n

i=0 i =
n·(n+1)

2 . This can then be used to prove

that
∑n

i=0 i = O(n2) because the dominant term of
n·(n+1)

2 is n2 from simplifying S to
1
2(n

2 + n).

6 Sixth Problem

Solution. For any positive integer n and assuming that
∑n

i=0 3
i ≤ 3n+1,

1. Base step:
∑0

i=0 3
i = 30 ≤ 30+1 = 31 is true.
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2. Inductive step: assuming
∑n+1

i=0 3i =
∑n

i=0 3
i + 3n+1

n∑
i=0

3i + 3n+1 ≤ 3n+1 + 3n+1

≤ 2· 3n+1

≤ 3(n+1)+1

so the inductive step holds true as well, so by induction
∑n

i=0 3
i ≤ 3n+1 for any positive

integer n.
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