ECS 60 DepT. OF COMPUTER SCIENCE, UC DAvIs WINTER 2018

Homework #2 Due 2/4/18 by 11:59pm*

Natalie Pueyo Svoboda, 997466498

February 4, 2018

Homeworks are to be submitted to Gradescope by the above due date. List your classmate
collaborators on the front page. The quiz will occur in-class on Wednesday, 2/7/18.
Problems come from:

Weiss "Data Structures and Algorithm Analysis in C++"

Sedgewick & Wayne "Algorithms"

e (Weiss) We are given an array that contains N numbers. We want to determine if
there are two numbers whose sum equals a given number K. For instance, if the
input is 8, 4, 1, 6, and K is 10, then the answer is yes (4 and 6). A number may
be used twice. First, give an O(n?) algorithm to solve this problem. Then give the
pseudocode of an O(nlogn) algorithm to solve this problem (Hint: sort first).

e (Weiss) Give the pseudocode of a data structure that supports the stack push and
pop operations, and a third operation £findMin, which returns the smallest element
in the data structure, all in O(1) worst-case time.

e (Sedgewick & Wayne) Inserting the keys in the order AXCSERH into an initially
empty binary search tree gives a worst-case tree where every node has one null link,
except one at the bottom, which has two null links. Give five other orderings of
these keys that produce worst-case trees.

e (Sedgewick & Wayne) Suppose that a certain binary search tree has keys that are
integers between 1 and 10, and we search for 5. Which sequence below cannot be
the sequence of keys examined?

a. 10,9,8,7,6,5

*Last updated February 4, 2018

b. 4,10, 8,7, 5

c. 1,10,2,9,3,8,4,7,6,5
d. 2,7,3,84,5

e. 1,2,10,4, 8,5

e (Sedgewick & Wayne) Give pseudocode for a binary search tree method height ()
that computes the height of the tree. Develop two implementations: the first, a
recursive method (which takes linear time and space proportional to the height),
and the second, a method that adds a field to each node in the tree (and takes
linear space and constant time per query).

1 FIRST PROBLEM

Solution. a) A O(n?) algorithm that could be used to solve this problem would involve
two for loops with an if statement. The first for loop would be used to through
the array one element at a time to get the first number in the sum. The second for
loop would be nested in the first for loop and would also go through each element
in the array to provide the second number in the sum. Lastly, there would be an
if statement inside the second for loop that would check if each sum is equal to the
given K value.

b) On the other hand, a O(n-log(n)) algorithm in pseudocode to do the same thing
could be:

low := O;
high := N - 1;
sort(array) ;
for(i :=0; j <N; j:=3+1)
mid = floor((low + high) / 2);
if (array[mid] = (K - arrayl[il))
print ("A match was found");
break;
else if(array[mid] < (K - array[i]))
low := mid + 1;
else
high := mid - 1;

2 SECOND PROBLEM

Solution. The way to implement a data structure that supports the stack push(),pop(),
and findMin() is to use to stacks. The first is used as the 'normal’ stack which saves
each new value. The second stack, minStack, is used to save the history of the minimum
values as they are pushed onto the stack.

class stackWithMin{
Stack stack;
Stack minStack;
void listPrepend(Stack, item);
void listRemoveAfter(Stack, int);
void push(item);
int popQ);
int findMin();
}swm;

push (newItem){
swm.listPrepend(swm.stack, newltem);
if newltem <= swm.minStack->head then

swm.listPrepend(swm.minStack, newltem);

+

popO{
poppedItem := swm.stack->head;
swm.listRemoveAfter (swm.stack, 0);
if poppedItem = swm.minStack->head then

swm.listRemoveAfter (swm.minStack, 0);

return PoppedItem;

}

findMin(){
minValue := swm.minStack->head;
return minValue;

+

3 THIRD PROBLEM

Solution. The following are five ways to order the keys AXCSFERH so as to give worst-

case BST:

a) ACEHRSX

b) ACEXSRH

d

)
)

¢) ACXESHR
) XSRHECA
)

e) XASCREH

4 FOURTH PROBLEM

Solution. Out of the following sequences, only (d) would not be a possible sequence of
examining a BST. This is because in case (d), at the second level node 7 would be parent
node to both nodes 3 and 8 according to BST rules. In this case, when searching for the
value 5, by BST rules, the search would not traverse to another branch (see figure).

5 FIFTH PROBLEM

Solution. The first implementation with linear time and space proportional to the
height:

int height(tree){

left, right := 0;

if tree = null then
return -1;

else
if tree.leftbranch != null then

left = height(tree.leftbranch);
if tree.rightbranch != null then

right = height(tree.rightbranch);
return max(left, right) + 1;

¥

The second implementation with linear space and constant time per query. This one
requires that [also implement a way to add a field to a node. In this case, the insert ()
method recalculates each node height value using recursion after a new node is inserted.
When the height () method is called, the method returns the value found at the pointer
to the height of the root calculated in insert ().

node* insert(node* root, node* newNode){
if root = null then
newNode->height := 1;
return newNode;
if root->value < newNode->value then

root->right := insert(root->right, newNode);
else
root->left := insert(root->left, newNode);

// height at root starts at 1 so add that to calculation
root->height := max(root->left->height, root->right->height) + 1;
return root;

i

height (tree){
height0fTree->root;
return heightOfTree;

i

	First Problem
	Second Problem
	Third Problem
	Fourth Problem
	Fifth Problem

